MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  albiim Unicode version

Theorem albiim 1699
Description: Split a biconditional and distribute quantifier. (Contributed by NM, 18-Aug-1993.)
Assertion
Ref Expression
albiim

Proof of Theorem albiim
StepHypRef Expression
1 dfbi2 628 . . 3
21albii 1640 . 2
3 19.26 1680 . 2
42, 3bitri 249 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  <->wb 184  /\wa 369  A.wal 1393
This theorem is referenced by:  2albiim  1700  mo2v  2289  mo2vOLD  2290  mo2vOLDOLD  2291  eu1  2327  eqss  3518  ssext  4707  asymref2  5389  pm14.122a  31329
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631
This theorem depends on definitions:  df-bi 185  df-an 371
  Copyright terms: Public domain W3C validator