Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  alcomiw Unicode version

Theorem alcomiw 1811
 Description: Weak version of alcom 1845. Uses only Tarski's FOL axiom schemes. (Contributed by NM, 10-Apr-2017.)
Hypothesis
Ref Expression
alcomiw.1
Assertion
Ref Expression
alcomiw
Distinct variable groups:   ,   ,   ,   ,

Proof of Theorem alcomiw
StepHypRef Expression
1 alcomiw.1 . . . . 5
21biimpd 207 . . . 4
32cbvalivw 1789 . . 3
43alimi 1633 . 2
5 ax-5 1704 . 2
61biimprd 223 . . . . . 6
76equcoms 1795 . . . . 5
87spimvw 1784 . . . 4
98alimi 1633 . . 3
109alimi 1633 . 2
114, 5, 103syl 20 1
 Colors of variables: wff setvar class Syntax hints:  ->wi 4  <->wb 184  A.wal 1393 This theorem is referenced by:  hbalw  1816  ax11w  1826 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790 This theorem depends on definitions:  df-bi 185  df-ex 1613
 Copyright terms: Public domain W3C validator