![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > alcomiw | Unicode version |
Description: Weak version of alcom 1845. Uses only Tarski's FOL axiom schemes. (Contributed by NM, 10-Apr-2017.) |
Ref | Expression |
---|---|
alcomiw.1 |
Ref | Expression |
---|---|
alcomiw |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alcomiw.1 | . . . . 5 | |
2 | 1 | biimpd 207 | . . . 4 |
3 | 2 | cbvalivw 1789 | . . 3 |
4 | 3 | alimi 1633 | . 2 |
5 | ax-5 1704 | . 2 | |
6 | 1 | biimprd 223 | . . . . . 6 |
7 | 6 | equcoms 1795 | . . . . 5 |
8 | 7 | spimvw 1784 | . . . 4 |
9 | 8 | alimi 1633 | . . 3 |
10 | 9 | alimi 1633 | . 2 |
11 | 4, 5, 10 | 3syl 20 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
A. wal 1393 |
This theorem is referenced by: hbalw 1816 ax11w 1826 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 |
This theorem depends on definitions: df-bi 185 df-ex 1613 |
Copyright terms: Public domain | W3C validator |