![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > alephle | Unicode version |
Description: The argument of the aleph function is less than or equal to its value. Exercise 2 of [TakeutiZaring] p. 91. (Later, in alephfp2 8511, we will that equality can sometimes hold.) (Contributed by NM, 9-Nov-2003.) (Proof shortened by Mario Carneiro, 22-Feb-2013.) |
Ref | Expression |
---|---|
alephle |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . 3 | |
2 | fveq2 5871 | . . 3 | |
3 | 1, 2 | sseq12d 3532 | . 2 |
4 | id 22 | . . 3 | |
5 | fveq2 5871 | . . 3 | |
6 | 4, 5 | sseq12d 3532 | . 2 |
7 | alephord2i 8479 | . . . . . 6 | |
8 | 7 | imp 429 | . . . . 5 |
9 | onelon 4908 | . . . . . 6 | |
10 | alephon 8471 | . . . . . 6 | |
11 | ontr2 4930 | . . . . . 6 | |
12 | 9, 10, 11 | sylancl 662 | . . . . 5 |
13 | 8, 12 | mpan2d 674 | . . . 4 |
14 | 13 | ralimdva 2865 | . . 3 |
15 | 10 | onirri 4989 | . . . . 5 |
16 | eleq1 2529 | . . . . . 6 | |
17 | 16 | rspccv 3207 | . . . . 5 |
18 | 15, 17 | mtoi 178 | . . . 4 |
19 | ontri1 4917 | . . . . 5 | |
20 | 10, 19 | mpan2 671 | . . . 4 |
21 | 18, 20 | syl5ibr 221 | . . 3 |
22 | 14, 21 | syld 44 | . 2 |
23 | 3, 6, 22 | tfis3 6692 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
<-> wb 184 /\ wa 369 = wceq 1395
e. wcel 1818 A. wral 2807 C_ wss 3475
con0 4883 ` cfv 5593 cale 8338 |
This theorem is referenced by: cardaleph 8491 alephfp 8510 winafp 9096 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-rep 4563 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-inf2 8079 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-int 4287 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-se 4844 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-isom 5602 df-riota 6257 df-om 6701 df-recs 7061 df-rdg 7095 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-fin 7540 df-oi 7956 df-har 8005 df-card 8341 df-aleph 8342 |
Copyright terms: Public domain | W3C validator |