![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > alephnbtwn | Unicode version |
Description: No cardinal can be sandwiched between an aleph and its successor aleph. Theorem 67 of [Suppes] p. 229. (Contributed by NM, 10-Nov-2003.) (Revised by Mario Carneiro, 15-May-2015.) |
Ref | Expression |
---|---|
alephnbtwn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alephon 8471 | . . . . . . . 8 | |
2 | id 22 | . . . . . . . . . 10 | |
3 | cardon 8346 | . . . . . . . . . 10 | |
4 | 2, 3 | syl6eqelr 2554 | . . . . . . . . 9 |
5 | onenon 8351 | . . . . . . . . 9 | |
6 | 4, 5 | syl 16 | . . . . . . . 8 |
7 | cardsdomel 8376 | . . . . . . . 8 | |
8 | 1, 6, 7 | sylancr 663 | . . . . . . 7 |
9 | eleq2 2530 | . . . . . . 7 | |
10 | 8, 9 | bitrd 253 | . . . . . 6 |
11 | 10 | adantl 466 | . . . . 5 |
12 | alephsuc 8470 | . . . . . . . . . . 11 | |
13 | onenon 8351 | . . . . . . . . . . . 12 | |
14 | harval2 8399 | . . . . . . . . . . . 12 | |
15 | 1, 13, 14 | mp2b 10 | . . . . . . . . . . 11 |
16 | 12, 15 | syl6eq 2514 | . . . . . . . . . 10 |
17 | 16 | eleq2d 2527 | . . . . . . . . 9 |
18 | 17 | biimpd 207 | . . . . . . . 8 |
19 | breq2 4456 | . . . . . . . . 9 | |
20 | 19 | onnminsb 6639 | . . . . . . . 8 |
21 | 18, 20 | sylan9 657 | . . . . . . 7 |
22 | 21 | con2d 115 | . . . . . 6 |
23 | 4, 22 | sylan2 474 | . . . . 5 |
24 | 11, 23 | sylbird 235 | . . . 4 |
25 | imnan 422 | . . . 4 | |
26 | 24, 25 | sylib 196 | . . 3 |
27 | 26 | ex 434 | . 2 |
28 | n0i 3789 | . . . . . . 7 | |
29 | alephfnon 8467 | . . . . . . . . . 10 | |
30 | fndm 5685 | . . . . . . . . . 10 | |
31 | 29, 30 | ax-mp 5 | . . . . . . . . 9 |
32 | 31 | eleq2i 2535 | . . . . . . . 8 |
33 | ndmfv 5895 | . . . . . . . 8 | |
34 | 32, 33 | sylnbir 307 | . . . . . . 7 |
35 | 28, 34 | nsyl2 127 | . . . . . 6 |
36 | sucelon 6652 | . . . . . 6 | |
37 | 35, 36 | sylibr 212 | . . . . 5 |
38 | 37 | adantl 466 | . . . 4 |
39 | 38 | con3i 135 | . . 3 |
40 | 39 | a1d 25 | . 2 |
41 | 27, 40 | pm2.61i 164 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
<-> wb 184 /\ wa 369 = wceq 1395
e. wcel 1818 { crab 2811 c0 3784 |^| cint 4286 class class class wbr 4452
con0 4883 suc csuc 4885 dom cdm 5004
Fn wfn 5588 ` cfv 5593 csdm 7535 char 8003 ccrd 8337 cale 8338 |
This theorem is referenced by: alephnbtwn2 8474 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-rep 4563 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-inf2 8079 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-int 4287 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-se 4844 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-isom 5602 df-riota 6257 df-om 6701 df-recs 7061 df-rdg 7095 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-oi 7956 df-har 8005 df-card 8341 df-aleph 8342 |
Copyright terms: Public domain | W3C validator |