![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > alephordi | Unicode version |
Description: Strict ordering property of the aleph function. (Contributed by Mario Carneiro, 2-Feb-2013.) |
Ref | Expression |
---|---|
alephordi |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq2 2530 | . . 3 | |
2 | fveq2 5871 | . . . 4 | |
3 | 2 | breq2d 4464 | . . 3 |
4 | 1, 3 | imbi12d 320 | . 2 |
5 | eleq2 2530 | . . 3 | |
6 | fveq2 5871 | . . . 4 | |
7 | 6 | breq2d 4464 | . . 3 |
8 | 5, 7 | imbi12d 320 | . 2 |
9 | eleq2 2530 | . . 3 | |
10 | fveq2 5871 | . . . 4 | |
11 | 10 | breq2d 4464 | . . 3 |
12 | 9, 11 | imbi12d 320 | . 2 |
13 | eleq2 2530 | . . 3 | |
14 | fveq2 5871 | . . . 4 | |
15 | 14 | breq2d 4464 | . . 3 |
16 | 13, 15 | imbi12d 320 | . 2 |
17 | noel 3788 | . . 3 | |
18 | 17 | pm2.21i 131 | . 2 |
19 | vex 3112 | . . . . 5 | |
20 | 19 | elsuc2 4953 | . . . 4 |
21 | alephordilem1 8475 | . . . . . . . . 9 | |
22 | sdomtr 7675 | . . . . . . . . 9 | |
23 | 21, 22 | sylan2 474 | . . . . . . . 8 |
24 | 23 | expcom 435 | . . . . . . 7 |
25 | 24 | imim2d 52 | . . . . . 6 |
26 | 25 | com23 78 | . . . . 5 |
27 | fveq2 5871 | . . . . . . . . 9 | |
28 | 27 | breq1d 4462 | . . . . . . . 8 |
29 | 21, 28 | syl5ibr 221 | . . . . . . 7 |
30 | 29 | a1d 25 | . . . . . 6 |
31 | 30 | com3r 79 | . . . . 5 |
32 | 26, 31 | jaod 380 | . . . 4 |
33 | 20, 32 | syl5bi 217 | . . 3 |
34 | 33 | com23 78 | . 2 |
35 | fvex 5881 | . . . . . . 7 | |
36 | 35 | a1i 11 | . . . . . 6 |
37 | fveq2 5871 | . . . . . . . 8 | |
38 | 37 | ssiun2s 4374 | . . . . . . 7 |
39 | vex 3112 | . . . . . . . . 9 | |
40 | alephlim 8469 | . . . . . . . . 9 | |
41 | 39, 40 | mpan 670 | . . . . . . . 8 |
42 | 41 | sseq2d 3531 | . . . . . . 7 |
43 | 38, 42 | syl5ibr 221 | . . . . . 6 |
44 | ssdomg 7581 | . . . . . 6 | |
45 | 36, 43, 44 | sylsyld 56 | . . . . 5 |
46 | limsuc 6684 | . . . . . . . . . 10 | |
47 | fveq2 5871 | . . . . . . . . . . . . 13 | |
48 | 47 | ssiun2s 4374 | . . . . . . . . . . . 12 |
49 | 41 | sseq2d 3531 | . . . . . . . . . . . 12 |
50 | 48, 49 | syl5ibr 221 | . . . . . . . . . . 11 |
51 | ssdomg 7581 | . . . . . . . . . . 11 | |
52 | 36, 50, 51 | sylsyld 56 | . . . . . . . . . 10 |
53 | 46, 52 | sylbid 215 | . . . . . . . . 9 |
54 | 53 | imp 429 | . . . . . . . 8 |
55 | domnsym 7663 | . . . . . . . 8 | |
56 | 54, 55 | syl 16 | . . . . . . 7 |
57 | limelon 4946 | . . . . . . . . . 10 | |
58 | 39, 57 | mpan 670 | . . . . . . . . 9 |
59 | onelon 4908 | . . . . . . . . 9 | |
60 | 58, 59 | sylan 471 | . . . . . . . 8 |
61 | ensym 7584 | . . . . . . . . 9 | |
62 | alephordilem1 8475 | . . . . . . . . 9 | |
63 | ensdomtr 7673 | . . . . . . . . . 10 | |
64 | 63 | ex 434 | . . . . . . . . 9 |
65 | 61, 62, 64 | syl2im 38 | . . . . . . . 8 |
66 | 60, 65 | syl5com 30 | . . . . . . 7 |
67 | 56, 66 | mtod 177 | . . . . . 6 |
68 | 67 | ex 434 | . . . . 5 |
69 | 45, 68 | jcad 533 | . . . 4 |
70 | brsdom 7558 | . . . 4 | |
71 | 69, 70 | syl6ibr 227 | . . 3 |
72 | 71 | a1d 25 | . 2 |
73 | 4, 8, 12, 16, 18, 34, 72 | tfinds 6694 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
\/ wo 368 /\ wa 369 = wceq 1395
e. wcel 1818 A. wral 2807 cvv 3109
C_ wss 3475 c0 3784 U_ ciun 4330 class class class wbr 4452
con0 4883 Lim wlim 4884 suc csuc 4885
` cfv 5593 cen 7533 cdom 7534 csdm 7535 cale 8338 |
This theorem is referenced by: alephord 8477 alephval2 8968 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-rep 4563 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-inf2 8079 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-int 4287 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-se 4844 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-isom 5602 df-riota 6257 df-om 6701 df-recs 7061 df-rdg 7095 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-oi 7956 df-har 8005 df-card 8341 df-aleph 8342 |
Copyright terms: Public domain | W3C validator |