MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alexn Unicode version

Theorem alexn 1664
Description: A relationship between two quantifiers and negation. (Contributed by NM, 18-Aug-1993.)
Assertion
Ref Expression
alexn

Proof of Theorem alexn
StepHypRef Expression
1 exnal 1648 . . 3
21albii 1640 . 2
3 alnex 1614 . 2
42, 3bitri 249 1
Colors of variables: wff setvar class
Syntax hints:  -.wn 3  <->wb 184  A.wal 1393  E.wex 1612
This theorem is referenced by:  2exnexn  1665  nalset  4589  kmlem2  8552  bj-nalset  34380
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631
This theorem depends on definitions:  df-bi 185  df-ex 1613
  Copyright terms: Public domain W3C validator