![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > algcvgblem | Unicode version |
Description: Lemma for algcvgb 14207. (Contributed by Paul Chapman, 31-Mar-2011.) |
Ref | Expression |
---|---|
algcvgblem |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imor 412 | . . . . 5 | |
2 | 0re 9617 | . . . . . . . . . . . . 13 | |
3 | nn0re 10829 | . . . . . . . . . . . . . 14 | |
4 | 3 | adantr 465 | . . . . . . . . . . . . 13 |
5 | ltnle 9685 | . . . . . . . . . . . . 13 | |
6 | 2, 4, 5 | sylancr 663 | . . . . . . . . . . . 12 |
7 | nn0le0eq0 10849 | . . . . . . . . . . . . . 14 | |
8 | 7 | notbid 294 | . . . . . . . . . . . . 13 |
9 | 8 | adantr 465 | . . . . . . . . . . . 12 |
10 | 6, 9 | bitrd 253 | . . . . . . . . . . 11 |
11 | df-ne 2654 | . . . . . . . . . . 11 | |
12 | 10, 11 | syl6bbr 263 | . . . . . . . . . 10 |
13 | 12 | anbi2d 703 | . . . . . . . . 9 |
14 | nne 2658 | . . . . . . . . . . 11 | |
15 | breq1 4455 | . . . . . . . . . . 11 | |
16 | 14, 15 | sylbi 195 | . . . . . . . . . 10 |
17 | 16 | biimpar 485 | . . . . . . . . 9 |
18 | 13, 17 | syl6bir 229 | . . . . . . . 8 |
19 | 18 | expd 436 | . . . . . . 7 |
20 | ax-1 6 | . . . . . . 7 | |
21 | 19, 20 | jctir 538 | . . . . . 6 |
22 | jaob 783 | . . . . . 6 | |
23 | 21, 22 | sylibr 212 | . . . . 5 |
24 | 1, 23 | syl5bi 217 | . . . 4 |
25 | nn0ge0 10846 | . . . . . . . 8 | |
26 | 25 | adantl 466 | . . . . . . 7 |
27 | nn0re 10829 | . . . . . . . 8 | |
28 | lelttr 9696 | . . . . . . . . 9 | |
29 | 2, 28 | mp3an1 1311 | . . . . . . . 8 |
30 | 27, 3, 29 | syl2anr 478 | . . . . . . 7 |
31 | 26, 30 | mpand 675 | . . . . . 6 |
32 | 31, 12 | sylibd 214 | . . . . 5 |
33 | 32 | imim2d 52 | . . . 4 |
34 | 24, 33 | jcad 533 | . . 3 |
35 | pm3.34 586 | . . 3 | |
36 | 34, 35 | impbid1 203 | . 2 |
37 | con34b 292 | . . . 4 | |
38 | df-ne 2654 | . . . . 5 | |
39 | 38, 11 | imbi12i 326 | . . . 4 |
40 | 37, 39 | bitr4i 252 | . . 3 |
41 | 40 | anbi2i 694 | . 2 |
42 | 36, 41 | syl6bbr 263 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
<-> wb 184 \/ wo 368 /\ wa 369
= wceq 1395 e. wcel 1818 =/= wne 2652
class class class wbr 4452 cr 9512 0 cc0 9513 clt 9649 cle 9650 cn0 10820 |
This theorem is referenced by: algcvgb 14207 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-resscn 9570 ax-1cn 9571 ax-icn 9572 ax-addcl 9573 ax-addrcl 9574 ax-mulcl 9575 ax-mulrcl 9576 ax-mulcom 9577 ax-addass 9578 ax-mulass 9579 ax-distr 9580 ax-i2m1 9581 ax-1ne0 9582 ax-1rid 9583 ax-rnegex 9584 ax-rrecex 9585 ax-cnre 9586 ax-pre-lttri 9587 ax-pre-lttrn 9588 ax-pre-ltadd 9589 ax-pre-mulgt0 9590 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-reu 2814 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-recs 7061 df-rdg 7095 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-pnf 9651 df-mnf 9652 df-xr 9653 df-ltxr 9654 df-le 9655 df-sub 9830 df-neg 9831 df-nn 10562 df-n0 10821 |
Copyright terms: Public domain | W3C validator |