![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > alrimi | Unicode version |
Description: Inference form of Theorem 19.21 of [Margaris] p. 90, see 19.21 1905. (Contributed by Mario Carneiro, 24-Sep-2016.) |
Ref | Expression |
---|---|
alrimi.1 | |
alrimi.2 |
Ref | Expression |
---|---|
alrimi |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alrimi.1 | . . 3 | |
2 | 1 | nfri 1874 | . 2 |
3 | alrimi.2 | . 2 | |
4 | 2, 3 | alrimih 1642 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 A. wal 1393
F/ wnf 1616 |
This theorem is referenced by: nfd 1878 axc4i 1898 19.12 1950 nfald 1951 cbv3 2015 cbv2 2020 sbbid 2144 nfsbd 2186 mo3 2323 eupicka 2359 2moex 2365 2mo 2373 2moOLD 2374 axbnd 2434 abbid 2592 nfcd 2613 ralrimiOLD 2858 ceqsalgALT 3135 ceqsex 3145 vtocldf 3158 elrab3t 3256 morex 3283 sbciedf 3363 csbiebt 3454 csbiedf 3455 ssrd 3508 invdisj 4441 zfrepclf 4569 eusv2nf 4650 ssopab2b 4779 imadif 5668 eusvobj1 6290 ssoprab2b 6354 ovmpt2dxf 6428 axrepnd 8990 axunnd 8992 axpownd 8999 axregndlem1 9000 axacndlem1 9006 axacndlem2 9007 axacndlem3 9008 axacndlem4 9009 axacndlem5 9010 axacnd 9011 mreexexd 15045 acsmapd 15808 isch3 26159 ssrelf 27466 eqrelrd2 27467 esumeq12dvaf 28044 iota5f 29102 wl-mo3t 30021 wl-ax11-lem3 30027 cover2 30204 alrimii 30524 mpt2bi123f 30571 mptbi12f 30575 pm11.57 31295 pm11.59 31297 dvnmul 31740 stoweidlem34 31816 ovmpt2rdxf 32928 tratrb 33307 hbexg 33329 e2ebindALT 33729 bnj1366 33888 bnj571 33964 bnj964 34001 bj-hbext 34264 bj-nfext 34266 bj-cbv3v 34288 bj-cbv3v2 34289 bj-abbid 34364 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-12 1854 |
This theorem depends on definitions: df-bi 185 df-ex 1613 df-nf 1617 |
Copyright terms: Public domain | W3C validator |