![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > an6 | Unicode version |
Description: Rearrangement of 6 conjuncts. (Contributed by NM, 13-Mar-1995.) |
Ref | Expression |
---|---|
an6 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | an4 824 | . . 3 | |
2 | an4 824 | . . . 4 | |
3 | 2 | anbi1i 695 | . . 3 |
4 | 1, 3 | bitri 249 | . 2 |
5 | df-3an 975 | . . 3 | |
6 | df-3an 975 | . . 3 | |
7 | 5, 6 | anbi12i 697 | . 2 |
8 | df-3an 975 | . 2 | |
9 | 4, 7, 8 | 3bitr4i 277 | 1 |
Colors of variables: wff setvar class |
Syntax hints: <-> wb 184 /\ wa 369
/\ w3a 973 |
This theorem is referenced by: 3an6 1309 ltdiv2OLD 10456 elfzuzb 11711 ptbasin 20078 iimulcl 21437 nb3grapr 24453 nb3grapr2 24454 txpcon 28677 fzadd2 30234 paddasslem9 35552 paddasslem10 35553 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 185 df-an 371 df-3an 975 |
Copyright terms: Public domain | W3C validator |