MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  anabs5 Unicode version

Theorem anabs5 809
Description: Absorption into embedded conjunct. (Contributed by NM, 20-Jul-1996.) (Proof shortened by Wolf Lammen, 9-Dec-2012.)
Assertion
Ref Expression
anabs5

Proof of Theorem anabs5
StepHypRef Expression
1 ibar 504 . . 3
21bicomd 201 . 2
32pm5.32i 637 1
Colors of variables: wff setvar class
Syntax hints:  <->wb 184  /\wa 369
This theorem is referenced by:  axrep5  4568  axsep2  4574  2sb5nd  33333  eelTT1  33502  uun121  33580  uunTT1  33590  uunTT1p1  33591  uunTT1p2  33592  uun111  33602  uun2221  33610  uun2221p1  33611  uun2221p2  33612  2sb5ndVD  33710  2sb5ndALT  33732  bj-axrep5  34378
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-an 371
  Copyright terms: Public domain W3C validator