![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > anabsi5 | Unicode version |
Description: Absorption of antecedent into conjunction. (Contributed by NM, 11-Jun-1995.) (Proof shortened by Wolf Lammen, 18-Nov-2013.) |
Ref | Expression |
---|---|
anabsi5.1 |
Ref | Expression |
---|---|
anabsi5 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anabsi5.1 | . . 3 | |
2 | 1 | imp 429 | . 2 |
3 | 2 | anabss5 816 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369 |
This theorem is referenced by: anabsi6 818 anabsi8 820 3anidm12 1285 rspce 3205 onint 6630 f1oweALT 6784 php2 7722 hasheqf1oi 12424 ptcmpfi 20314 redwlk 24608 vdusgraval 24907 relexpsucl 29055 relexpcnv 29056 relexpdm 29058 relexprn 29059 rtrclreclem.trans 29069 rtrclreclem.min 29070 diophin 30706 diophun 30707 rspcegf 31398 stoweidlem36 31818 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 185 df-an 371 |
Copyright terms: Public domain | W3C validator |