MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  anbi1 Unicode version

Theorem anbi1 706
Description: Introduce a right conjunct to both sides of a logical equivalence. Theorem *4.36 of [WhiteheadRussell] p. 118. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
anbi1

Proof of Theorem anbi1
StepHypRef Expression
1 id 22 . 2
21anbi1d 704 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  <->wb 184  /\wa 369
This theorem is referenced by:  pm5.75  937  nanbi1  1354  rexfiuz  13180  relexpindlem  29062  bnj916  33991
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-an 371
  Copyright terms: Public domain W3C validator