MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ancomst Unicode version

Theorem ancomst 452
Description: Closed form of ancoms 453. (Contributed by Alan Sare, 31-Dec-2011.)
Assertion
Ref Expression
ancomst

Proof of Theorem ancomst
StepHypRef Expression
1 ancom 450 . 2
21imbi1i 325 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  <->wb 184  /\wa 369
This theorem is referenced by:  sbcom2  2189  ralcomf  3016  fvn0ssdmfun  6022  ovolgelb  21891  itg2leub  22141  nmoubi  25687  wl-sbcom2d  30011  expcomdg  33269  bj-ifidg  37707
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-an 371
  Copyright terms: Public domain W3C validator