![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > ancomst | Unicode version |
Description: Closed form of ancoms 453. (Contributed by Alan Sare, 31-Dec-2011.) |
Ref | Expression |
---|---|
ancomst |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ancom 450 | . 2 | |
2 | 1 | imbi1i 325 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 |
This theorem is referenced by: sbcom2 2189 ralcomf 3016 fvn0ssdmfun 6022 ovolgelb 21891 itg2leub 22141 nmoubi 25687 wl-sbcom2d 30011 expcomdg 33269 bj-ifidg 37707 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 185 df-an 371 |
Copyright terms: Public domain | W3C validator |