![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > anidm | Unicode version |
Description: Idempotent law for conjunction. (Contributed by NM, 8-Jan-2004.) (Proof shortened by Wolf Lammen, 14-Mar-2014.) |
Ref | Expression |
---|---|
anidm |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm4.24 643 | . 2 | |
2 | 1 | bicomi 202 | 1 |
Colors of variables: wff setvar class |
Syntax hints: <-> wb 184 /\ wa 369 |
This theorem is referenced by: anidmdbi 646 anandi 828 anandir 829 nannot 1351 truantru 1419 falanfal 1422 nic-axALT 1507 2eu4OLD 2381 inidm 3706 opcom 4746 opeqsn 4748 poirr 4816 asymref2 5389 xp11 5447 fununi 5659 brprcneu 5864 f13dfv 6180 erinxp 7404 dom2lem 7575 pssnn 7758 dmaddpi 9289 dmmulpi 9290 gcddvds 14153 iscatd2 15078 isnsg2 16231 eqger 16251 gaorber 16346 efgcpbllemb 16773 xmeter 20936 caucfil 21722 axcontlem5 24271 cusgra2v 24462 cusgra3v 24464 erclwwlkref 24813 erclwwlknref 24825 frgra3v 25002 disjunsn 27453 subfaclefac 28620 inixp 30219 2reu4a 32194 dfiso2 32568 eelT11 33496 uunT11 33593 uunT11p1 33594 uunT11p2 33595 uun111 33602 bnj594 33970 cdlemg33b 36433 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 185 df-an 371 |
Copyright terms: Public domain | W3C validator |