![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > anim12d | Unicode version |
Description: Conjoin antecedents and consequents in a deduction. (Contributed by NM, 3-Apr-1994.) (Proof shortened by Wolf Lammen, 18-Dec-2013.) |
Ref | Expression |
---|---|
anim12d.1 | |
anim12d.2 |
Ref | Expression |
---|---|
anim12d |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anim12d.1 | . 2 | |
2 | anim12d.2 | . 2 | |
3 | idd 24 | . 2 | |
4 | 1, 2, 3 | syl2and 483 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369 |
This theorem is referenced by: anim1d 564 anim2d 565 prth 571 im2anan9 835 anim12dan 837 3anim123d 1306 mo3 2323 2euswap 2370 2moOLD 2374 ssunsn2 4189 disjiun 4442 soss 4823 wess 4871 ordtri3 4919 oneqmini 4934 frinxp 5070 trin2 5395 xp11 5447 funss 5611 fun 5753 fvcofneq 6039 dff13 6166 f1eqcocnv 6204 isores3 6231 isosolem 6243 isowe2 6246 ordom 6709 f1oweALT 6784 f1o2ndf1 6908 tposfn2 6996 tposf1o2 7000 smo11 7054 tz7.48lem 7125 om00 7243 omsmo 7322 ixpfi2 7838 elfiun 7910 supmo 7932 alephord 8477 cardaleph 8491 dfac5 8530 fin1a2lem9 8809 axdc3lem2 8852 zorn2lem6 8902 grudomon 9216 indpi 9306 genpnmax 9406 reclem3pr 9448 reclem4pr 9449 suplem1pr 9451 supsrlem 9509 dedekind 9765 lemul12b 10424 fimaxre 10515 lbreu 10518 supmullem2 10535 cju 10557 nnind 10579 uz11 11132 xrre2 11400 qbtwnre 11427 xrsupexmnf 11525 xrinfmexpnf 11526 ico0 11604 ioc0 11605 ssfzoulel 11906 swrdnd 12657 swrdccatin2 12712 sqrlem6 13081 o1lo1 13360 ruclem9 13971 isprm3 14226 eulerthlem2 14312 prmdiveq 14316 ramub2 14532 joinfval 15631 meetfval 15645 clatl 15746 lubun 15753 ipodrsima 15795 dirtr 15866 mulgpropd 16175 dprdss 17076 subrgdvds 17443 dmatsubcl 19000 scmatcrng 19023 epttop 19510 cnpresti 19789 cnprest 19790 lmmo 19881 1stcrest 19954 lly1stc 19997 txcnp 20121 addcnlem 21368 caussi 21736 bcthlem5 21767 ovollb2lem 21899 voliunlem1 21960 ioombl1lem4 21971 rolle 22391 c1lip1 22398 c1lip3 22400 ulmval 22775 sqf11 23413 fsumvma 23488 dchrelbas3 23513 brbtwn2 24208 axeuclidlem 24265 axcontlem9 24275 axcontlem10 24276 usgra2adedgspthlem1 24611 usgra2adedgwlkon 24615 usgra2wlkspthlem2 24620 constr3trllem2 24651 4cycl4v4e 24666 4cycl4dv 24667 usg2wlkonot 24883 usg2wotspth 24884 eupai 24967 2pthfrgrarn2 25010 frgranbnb 25020 subgoablo 25313 nmcvcn 25605 sspmval 25646 sspival 25651 sspimsval 25653 sspph 25770 shsubcl 26138 shorth 26213 5oalem6 26577 strlem1 27169 atexch 27300 cdj3i 27360 xrge0infss 27580 xrofsup 27582 ishashinf 27606 nnindf 27610 cnre2csqima 27893 erdszelem9 28643 erdsze2lem2 28648 ss2mcls 28928 funpsstri 29195 dfon2lem4 29218 dfon2 29224 trpredrec 29321 frmin 29322 wfrlem4 29346 wsuclem 29381 frrlem4 29390 nocvxminlem 29450 nocvxmin 29451 nofulllem5 29466 elfuns 29565 btwnswapid 29667 ifscgr 29694 hilbert1.2 29805 wl-mo3t 30021 supadd 30042 ltflcei 30043 tan2h 30047 mblfinlem3 30053 elicc3 30135 tailfb 30195 fzmul 30233 metf1o 30248 ismtycnv 30298 ismtyres 30304 crngohomfo 30403 prtlem50 30588 iocinico 31179 pm11.59 31297 infrglb 31584 afvres 32257 usgvad2edg 32411 cictr 32589 rhmsscrnghm 32834 ply1mulgsumlem1 32986 hlhgt2 35113 hl2at 35129 2llnjN 35291 2lplnj 35344 linepsubN 35476 cdlemg33b0 36427 dvh3dim3N 37176 mapdh9a 37517 coss12d 37759 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 185 df-an 371 |
Copyright terms: Public domain | W3C validator |