![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > anim12dan | Unicode version |
Description: Conjoin antecedents and consequents in a deduction. (Contributed by Mario Carneiro, 12-May-2014.) |
Ref | Expression |
---|---|
anim12dan.1 | |
anim12dan.2 |
Ref | Expression |
---|---|
anim12dan |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anim12dan.1 | . . . 4 | |
2 | 1 | ex 434 | . . 3 |
3 | anim12dan.2 | . . . 4 | |
4 | 3 | ex 434 | . . 3 |
5 | 2, 4 | anim12d 563 | . 2 |
6 | 5 | imp 429 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369 |
This theorem is referenced by: isocnv 6226 isocnv3 6228 f1oiso2 6248 xpexr2 6741 f1o2ndf1 6908 fnwelem 6915 omword 7238 oeword 7258 swoso 7361 xpf1o 7699 zorn2lem6 8902 ltapr 9444 ltord1 10104 pc11 14403 imasaddfnlem 14925 imasaddflem 14927 pslem 15836 mhmpropd 15972 frmdsssubm 16029 ghmsub 16275 gasubg 16340 invrpropd 17347 mplcoe5lem 18130 evlseu 18185 znfld 18599 cygznlem3 18608 cpmatmcl 19220 tgclb 19472 innei 19626 txcn 20127 txflf 20507 qustgplem 20619 cfilresi 21734 volcn 22015 itg1addlem4 22106 dvlip 22394 plymullem1 22611 lgsdir2 23603 lgsdchr 23623 brbtwn2 24208 axcontlem7 24273 usgra2adedgwlkon 24615 fargshiftf1 24637 frgrancvvdeqlemB 25038 ghgrplem2OLD 25369 ghsubgolemOLD 25372 vcsub4 25469 nvaddsub4 25556 hhcno 26823 hhcnf 26824 unopf1o 26835 counop 26840 afsval 28551 ghomgsg 29033 ontopbas 29893 onsuct0 29906 heicant 30049 ftc1anclem6 30095 anim12da 30201 equivbnd2 30288 ismtybndlem 30302 ismrer1 30334 iccbnd 30336 dvconstbi 31239 2f1fvneq 32307 mgmhmpropd 32473 xihopellsmN 36981 dihopellsm 36982 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 185 df-an 371 |
Copyright terms: Public domain | W3C validator |