MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  anim12ii Unicode version

Theorem anim12ii 570
Description: Conjoin antecedents and consequents in a deduction. (Contributed by NM, 11-Nov-2007.) (Proof shortened by Wolf Lammen, 19-Jul-2013.)
Hypotheses
Ref Expression
anim12ii.1
anim12ii.2
Assertion
Ref Expression
anim12ii

Proof of Theorem anim12ii
StepHypRef Expression
1 anim12ii.1 . . 3
21adantr 465 . 2
3 anim12ii.2 . . 3
43adantl 466 . 2
52, 4jcad 533 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  /\wa 369
This theorem is referenced by:  euim  2344  2mo  2373  elex22  3122  tz7.2  4868  funcnvuni  6753  funressnfv  32213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-an 371
  Copyright terms: Public domain W3C validator