![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > anim2d | Unicode version |
Description: Add a conjunct to left of antecedent and consequent in a deduction. (Contributed by NM, 14-May-1993.) |
Ref | Expression |
---|---|
anim1d.1 |
Ref | Expression |
---|---|
anim2d |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idd 24 | . 2 | |
2 | anim1d.1 | . 2 | |
3 | 1, 2 | anim12d 563 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369 |
This theorem is referenced by: eleq2d 2527 moeq3 3276 ssel 3497 sscon 3637 uniss 4270 trel3 4553 copsexgOLD 4738 ssopab2 4778 coss1 5163 fununi 5659 imadif 5668 fss 5744 ssimaex 5938 opabbrexOLD 6340 ssoprab2 6353 poxp 6912 soxp 6913 pmss12g 7465 ss2ixp 7502 xpdom2 7632 fisup2g 7947 fisupcl 7948 inf3lem1 8066 epfrs 8183 cfub 8650 cflm 8651 fin23lem34 8747 isf32lem2 8755 axcc4 8840 domtriomlem 8843 ltexprlem3 9437 nnunb 10816 indstr 11179 qbtwnxr 11428 qsqueeze 11429 xrsupsslem 11527 xrinfmsslem 11528 ioc0 11605 climshftlem 13397 o1rlimmul 13441 ramub2 14532 monmat2matmon 19325 tgcl 19471 neips 19614 ssnei2 19617 tgcnp 19754 cnpnei 19765 cnpco 19768 hauscmplem 19906 hauscmp 19907 llyss 19980 nllyss 19981 lfinun 20026 kgen2ss 20056 txcnpi 20109 txcmplem1 20142 fgss 20374 cnpflf2 20501 fclsss1 20523 fclscf 20526 alexsubALT 20551 cnextcn 20567 tsmsxp 20657 mopni3 20997 metutopOLD 21085 psmetutop 21086 iscau4 21718 caussi 21736 ovolgelb 21891 mbfi1flim 22130 ellimc3 22283 lhop1 22415 tgbtwndiff 23897 axcontlem4 24270 iswlkg 24524 sspmval 25646 sspival 25651 shmodsi 26307 atcvat4i 27316 cdj3lem2b 27356 ifeqeqx 27419 crefss 27852 issgon 28123 cvmlift2lem12 28759 ss2mcls 28928 poseq 29333 btwndiff 29677 seglecgr12im 29760 waj-ax 29879 lukshef-ax2 29880 tan2h 30047 mblfinlem3 30053 mblfinlem4 30054 ismblfin 30055 fnessref 30175 fphpdo 30751 irrapxlem2 30759 pell14qrss1234 30792 pell1qrss14 30804 acongtr 30916 islptre 31625 limccog 31626 ax6e2eq 33330 cvrat4 35167 athgt 35180 ps-2 35202 paddss1 35541 paddss2 35542 cdlemg33b0 36427 cdlemg33a 36432 dihjat1lem 37155 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 185 df-an 371 |
Copyright terms: Public domain | W3C validator |