MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  anor Unicode version

Theorem anor 489
Description: Conjunction in terms of disjunction (De Morgan's law). Theorem *4.5 of [WhiteheadRussell] p. 120. (Contributed by NM, 3-Jan-1993.) (Proof shortened by Wolf Lammen, 3-Nov-2012.)
Assertion
Ref Expression
anor

Proof of Theorem anor
StepHypRef Expression
1 ianor 488 . . 3
21bicomi 202 . 2
32con2bii 332 1
Colors of variables: wff setvar class
Syntax hints:  -.wn 3  <->wb 184  \/wo 368  /\wa 369
This theorem is referenced by:  pm3.1  498  pm3.11  499  dn1  966  3anor  989  bropopvvv  6880  2wlkonot3v  24875  2spthonot3v  24876  bj-ifananb  37731
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371
  Copyright terms: Public domain W3C validator