![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > arisum | Unicode version |
Description: Arithmetic series sum of the first positive integers. This is Metamath 100 proof #68. (Contributed by FL, 16-Nov-2006.) (Proof shortened by Mario Carneiro, 22-May-2014.) |
Ref | Expression |
---|---|
arisum |
N
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elnn0 10822 | . 2 | |
2 | 1zzd 10920 | . . . . . 6 | |
3 | nnz 10911 | . . . . . 6 | |
4 | elfzelz 11717 | . . . . . . . 8 | |
5 | 4 | zcnd 10995 | . . . . . . 7 |
6 | 5 | adantl 466 | . . . . . 6 |
7 | id 22 | . . . . . 6 | |
8 | 2, 2, 3, 6, 7 | fsumshftm 13596 | . . . . 5 |
9 | 1m1e0 10629 | . . . . . . 7 | |
10 | 9 | oveq1i 6306 | . . . . . 6 |
11 | 10 | sumeq1i 13520 | . . . . 5 |
12 | 8, 11 | syl6eq 2514 | . . . 4 |
13 | elfznn0 11800 | . . . . . . . . 9 | |
14 | 13 | adantl 466 | . . . . . . . 8 |
15 | bcnp1n 12392 | . . . . . . . 8 | |
16 | 14, 15 | syl 16 | . . . . . . 7 |
17 | 14 | nn0cnd 10879 | . . . . . . . . 9 |
18 | ax-1cn 9571 | . . . . . . . . 9 | |
19 | addcom 9787 | . . . . . . . . 9 | |
20 | 17, 18, 19 | sylancl 662 | . . . . . . . 8 |
21 | 20 | oveq1d 6311 | . . . . . . 7 |
22 | 16, 21 | eqtr3d 2500 | . . . . . 6 |
23 | 22 | sumeq2dv 13525 | . . . . 5 |
24 | 1nn0 10836 | . . . . . 6 | |
25 | nnm1nn0 10862 | . . . . . 6 | |
26 | bcxmas 13647 | . . . . . 6 | |
27 | 24, 25, 26 | sylancr 663 | . . . . 5 |
28 | 23, 27 | eqtr4d 2501 | . . . 4 |
29 | 1cnd 9633 | . . . . . . . 8 | |
30 | nncn 10569 | . . . . . . . 8 | |
31 | 29, 29, 30 | ppncand 9994 | . . . . . . 7 |
32 | addcom 9787 | . . . . . . . 8 | |
33 | 18, 30, 32 | sylancr 663 | . . . . . . 7 |
34 | 31, 33 | eqtrd 2498 | . . . . . 6 |
35 | 34 | oveq1d 6311 | . . . . 5 |
36 | nnnn0 10827 | . . . . . 6 | |
37 | bcp1m1 12398 | . . . . . 6 | |
38 | 36, 37 | syl 16 | . . . . 5 |
39 | 30, 29, 30 | adddird 9642 | . . . . . . 7 |
40 | sqval 12227 | . . . . . . . . . 10 | |
41 | 40 | eqcomd 2465 | . . . . . . . . 9 |
42 | mulid2 9615 | . . . . . . . . 9 | |
43 | 41, 42 | oveq12d 6314 | . . . . . . . 8 |
44 | 30, 43 | syl 16 | . . . . . . 7 |
45 | 39, 44 | eqtrd 2498 | . . . . . 6 |
46 | 45 | oveq1d 6311 | . . . . 5 |
47 | 35, 38, 46 | 3eqtrd 2502 | . . . 4 |
48 | 12, 28, 47 | 3eqtrd 2502 | . . 3 |
49 | oveq2 6304 | . . . . . . 7 | |
50 | fz10 11735 | . . . . . . 7 | |
51 | 49, 50 | syl6eq 2514 | . . . . . 6 |
52 | 51 | sumeq1d 13523 | . . . . 5 |
53 | sum0 13543 | . . . . 5 | |
54 | 52, 53 | syl6eq 2514 | . . . 4 |
55 | sq0i 12260 | . . . . . . . 8 | |
56 | id 22 | . . . . . . . 8 | |
57 | 55, 56 | oveq12d 6314 | . . . . . . 7 |
58 | 00id 9776 | . . . . . . 7 | |
59 | 57, 58 | syl6eq 2514 | . . . . . 6 |
60 | 59 | oveq1d 6311 | . . . . 5 |
61 | 2cn 10631 | . . . . . 6 | |
62 | 2ne0 10653 | . . . . . 6 | |
63 | 61, 62 | div0i 10303 | . . . . 5 |
64 | 60, 63 | syl6eq 2514 | . . . 4 |
65 | 54, 64 | eqtr4d 2501 | . . 3 |
66 | 48, 65 | jaoi 379 | . 2 |
67 | 1, 66 | sylbi 195 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 \/ wo 368
/\ wa 369 = wceq 1395 e. wcel 1818
c0 3784 (class class class)co 6296
cc 9511 0 cc0 9513 1 c1 9514
caddc 9516 cmul 9518 cmin 9828 cdiv 10231 cn 10561 2 c2 10610 cn0 10820
cfz 11701 cexp 12166 cbc 12380
sum_ csu 13508 |
This theorem is referenced by: arisum2 13672 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-rep 4563 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-inf2 8079 ax-cnex 9569 ax-resscn 9570 ax-1cn 9571 ax-icn 9572 ax-addcl 9573 ax-addrcl 9574 ax-mulcl 9575 ax-mulrcl 9576 ax-mulcom 9577 ax-addass 9578 ax-mulass 9579 ax-distr 9580 ax-i2m1 9581 ax-1ne0 9582 ax-1rid 9583 ax-rnegex 9584 ax-rrecex 9585 ax-cnre 9586 ax-pre-lttri 9587 ax-pre-lttrn 9588 ax-pre-ltadd 9589 ax-pre-mulgt0 9590 ax-pre-sup 9591 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-fal 1401 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-int 4287 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-se 4844 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-isom 5602 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-1st 6800 df-2nd 6801 df-recs 7061 df-rdg 7095 df-1o 7149 df-oadd 7153 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-fin 7540 df-sup 7921 df-oi 7956 df-card 8341 df-pnf 9651 df-mnf 9652 df-xr 9653 df-ltxr 9654 df-le 9655 df-sub 9830 df-neg 9831 df-div 10232 df-nn 10562 df-2 10619 df-3 10620 df-n0 10821 df-z 10890 df-uz 11111 df-rp 11250 df-fz 11702 df-fzo 11825 df-seq 12108 df-exp 12167 df-fac 12354 df-bc 12381 df-hash 12406 df-cj 12932 df-re 12933 df-im 12934 df-sqrt 13068 df-abs 13069 df-clim 13311 df-sum 13509 |
Copyright terms: Public domain | W3C validator |