![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > arisum2 | Unicode version |
Description: Arithmetic series sum of the first nonnegative integers. (Contributed by Mario Carneiro, 17-Apr-2015.) |
Ref | Expression |
---|---|
arisum2 |
N
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elnn0 10822 | . 2 | |
2 | nnm1nn0 10862 | . . . . . 6 | |
3 | nn0uz 11144 | . . . . . 6 | |
4 | 2, 3 | syl6eleq 2555 | . . . . 5 |
5 | elfznn0 11800 | . . . . . . 7 | |
6 | 5 | adantl 466 | . . . . . 6 |
7 | 6 | nn0cnd 10879 | . . . . 5 |
8 | id 22 | . . . . 5 | |
9 | 4, 7, 8 | fsum1p 13568 | . . . 4 |
10 | 1e0p1 11032 | . . . . . . . . 9 | |
11 | 10 | oveq1i 6306 | . . . . . . . 8 |
12 | 11 | sumeq1i 13520 | . . . . . . 7 |
13 | 12 | oveq2i 6307 | . . . . . 6 |
14 | fzfid 12083 | . . . . . . . 8 | |
15 | elfznn 11743 | . . . . . . . . . 10 | |
16 | 15 | adantl 466 | . . . . . . . . 9 |
17 | 16 | nncnd 10577 | . . . . . . . 8 |
18 | 14, 17 | fsumcl 13555 | . . . . . . 7 |
19 | 18 | addid2d 9802 | . . . . . 6 |
20 | 13, 19 | syl5eqr 2512 | . . . . 5 |
21 | arisum 13671 | . . . . . . 7 | |
22 | 2, 21 | syl 16 | . . . . . 6 |
23 | nncn 10569 | . . . . . . . . . . . . . . . 16 | |
24 | 23 | mulid1d 9634 | . . . . . . . . . . . . . . 15 |
25 | 24 | oveq2d 6312 | . . . . . . . . . . . . . 14 |
26 | 23 | 2timesd 10806 | . . . . . . . . . . . . . 14 |
27 | 25, 26 | eqtrd 2498 | . . . . . . . . . . . . 13 |
28 | 27 | oveq2d 6312 | . . . . . . . . . . . 12 |
29 | 23 | sqcld 12308 | . . . . . . . . . . . . 13 |
30 | 29, 23, 23 | subsub4d 9985 | . . . . . . . . . . . 12 |
31 | 28, 30 | eqtr4d 2501 | . . . . . . . . . . 11 |
32 | sq1 12262 | . . . . . . . . . . . 12 | |
33 | 32 | a1i 11 | . . . . . . . . . . 11 |
34 | 31, 33 | oveq12d 6314 | . . . . . . . . . 10 |
35 | ax-1cn 9571 | . . . . . . . . . . 11 | |
36 | binom2sub 12285 | . . . . . . . . . . 11 | |
37 | 23, 35, 36 | sylancl 662 | . . . . . . . . . 10 |
38 | 29, 23 | subcld 9954 | . . . . . . . . . . 11 |
39 | 35 | a1i 11 | . . . . . . . . . . 11 |
40 | 38, 23, 39 | subsubd 9982 | . . . . . . . . . 10 |
41 | 34, 37, 40 | 3eqtr4d 2508 | . . . . . . . . 9 |
42 | 41 | oveq1d 6311 | . . . . . . . 8 |
43 | subcl 9842 | . . . . . . . . . 10 | |
44 | 23, 35, 43 | sylancl 662 | . . . . . . . . 9 |
45 | 38, 44 | npcand 9958 | . . . . . . . 8 |
46 | 42, 45 | eqtrd 2498 | . . . . . . 7 |
47 | 46 | oveq1d 6311 | . . . . . 6 |
48 | 22, 47 | eqtrd 2498 | . . . . 5 |
49 | 20, 48 | eqtrd 2498 | . . . 4 |
50 | 9, 49 | eqtrd 2498 | . . 3 |
51 | oveq1 6303 | . . . . . . . 8 | |
52 | 51 | oveq2d 6312 | . . . . . . 7 |
53 | 0re 9617 | . . . . . . . . 9 | |
54 | ltm1 10407 | . . . . . . . . 9 | |
55 | 53, 54 | ax-mp 5 | . . . . . . . 8 |
56 | 0z 10900 | . . . . . . . . 9 | |
57 | peano2zm 10932 | . . . . . . . . . 10 | |
58 | 56, 57 | ax-mp 5 | . . . . . . . . 9 |
59 | fzn 11731 | . . . . . . . . 9 | |
60 | 56, 58, 59 | mp2an 672 | . . . . . . . 8 |
61 | 55, 60 | mpbi 208 | . . . . . . 7 |
62 | 52, 61 | syl6eq 2514 | . . . . . 6 |
63 | 62 | sumeq1d 13523 | . . . . 5 |
64 | sum0 13543 | . . . . 5 | |
65 | 63, 64 | syl6eq 2514 | . . . 4 |
66 | sq0i 12260 | . . . . . . . 8 | |
67 | id 22 | . . . . . . . 8 | |
68 | 66, 67 | oveq12d 6314 | . . . . . . 7 |
69 | 0m0e0 10670 | . . . . . . 7 | |
70 | 68, 69 | syl6eq 2514 | . . . . . 6 |
71 | 70 | oveq1d 6311 | . . . . 5 |
72 | 2cn 10631 | . . . . . 6 | |
73 | 2ne0 10653 | . . . . . 6 | |
74 | 72, 73 | div0i 10303 | . . . . 5 |
75 | 71, 74 | syl6eq 2514 | . . . 4 |
76 | 65, 75 | eqtr4d 2501 | . . 3 |
77 | 50, 76 | jaoi 379 | . 2 |
78 | 1, 77 | sylbi 195 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
\/ wo 368 /\ wa 369 = wceq 1395
e. wcel 1818 c0 3784 class class class wbr 4452
` cfv 5593 (class class class)co 6296
cc 9511 cr 9512 0 cc0 9513 1 c1 9514
caddc 9516 cmul 9518 clt 9649 cmin 9828 cdiv 10231 cn 10561 2 c2 10610 cn0 10820
cz 10889 cuz 11110
cfz 11701 cexp 12166 sum_ csu 13508 |
This theorem is referenced by: birthdaylem3 23283 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-rep 4563 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-inf2 8079 ax-cnex 9569 ax-resscn 9570 ax-1cn 9571 ax-icn 9572 ax-addcl 9573 ax-addrcl 9574 ax-mulcl 9575 ax-mulrcl 9576 ax-mulcom 9577 ax-addass 9578 ax-mulass 9579 ax-distr 9580 ax-i2m1 9581 ax-1ne0 9582 ax-1rid 9583 ax-rnegex 9584 ax-rrecex 9585 ax-cnre 9586 ax-pre-lttri 9587 ax-pre-lttrn 9588 ax-pre-ltadd 9589 ax-pre-mulgt0 9590 ax-pre-sup 9591 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-fal 1401 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-int 4287 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-se 4844 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-isom 5602 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-1st 6800 df-2nd 6801 df-recs 7061 df-rdg 7095 df-1o 7149 df-oadd 7153 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-fin 7540 df-sup 7921 df-oi 7956 df-card 8341 df-pnf 9651 df-mnf 9652 df-xr 9653 df-ltxr 9654 df-le 9655 df-sub 9830 df-neg 9831 df-div 10232 df-nn 10562 df-2 10619 df-3 10620 df-n0 10821 df-z 10890 df-uz 11111 df-rp 11250 df-fz 11702 df-fzo 11825 df-seq 12108 df-exp 12167 df-fac 12354 df-bc 12381 df-hash 12406 df-cj 12932 df-re 12933 df-im 12934 df-sqrt 13068 df-abs 13069 df-clim 13311 df-sum 13509 |
Copyright terms: Public domain | W3C validator |