![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > asymref2 | Unicode version |
Description: Two ways of saying a relation is antisymmetric and reflexive. (Contributed by NM, 6-May-2008.) (Proof shortened by Mario Carneiro, 4-Dec-2016.) |
Ref | Expression |
---|---|
asymref2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | asymref 5388 | . 2 | |
2 | albiim 1699 | . . 3 | |
3 | 2 | ralbii 2888 | . 2 |
4 | r19.26 2984 | . . 3 | |
5 | ancom 450 | . . 3 | |
6 | equcom 1794 | . . . . . . . 8 | |
7 | 6 | imbi1i 325 | . . . . . . 7 |
8 | 7 | albii 1640 | . . . . . 6 |
9 | nfv 1707 | . . . . . . 7 | |
10 | breq2 4456 | . . . . . . . . 9 | |
11 | breq1 4455 | . . . . . . . . 9 | |
12 | 10, 11 | anbi12d 710 | . . . . . . . 8 |
13 | anidm 644 | . . . . . . . 8 | |
14 | 12, 13 | syl6bb 261 | . . . . . . 7 |
15 | 9, 14 | equsal 2036 | . . . . . 6 |
16 | 8, 15 | bitri 249 | . . . . 5 |
17 | 16 | ralbii 2888 | . . . 4 |
18 | df-ral 2812 | . . . . 5 | |
19 | df-br 4453 | . . . . . . . . . . . . 13 | |
20 | vex 3112 | . . . . . . . . . . . . . . 15 | |
21 | vex 3112 | . . . . . . . . . . . . . . 15 | |
22 | 20, 21 | opeluu 4721 | . . . . . . . . . . . . . 14 |
23 | 22 | simpld 459 | . . . . . . . . . . . . 13 |
24 | 19, 23 | sylbi 195 | . . . . . . . . . . . 12 |
25 | 24 | adantr 465 | . . . . . . . . . . 11 |
26 | 25 | pm2.24d 143 | . . . . . . . . . 10 |
27 | 26 | com12 31 | . . . . . . . . 9 |
28 | 27 | alrimiv 1719 | . . . . . . . 8 |
29 | id 22 | . . . . . . . 8 | |
30 | 28, 29 | ja 161 | . . . . . . 7 |
31 | ax-1 6 | . . . . . . 7 | |
32 | 30, 31 | impbii 188 | . . . . . 6 |
33 | 32 | albii 1640 | . . . . 5 |
34 | 18, 33 | bitri 249 | . . . 4 |
35 | 17, 34 | anbi12i 697 | . . 3 |
36 | 4, 5, 35 | 3bitri 271 | . 2 |
37 | 1, 3, 36 | 3bitri 271 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
<-> wb 184 /\ wa 369 A. wal 1393
= wceq 1395 e. wcel 1818 A. wral 2807
i^i cin 3474 <. cop 4035 U. cuni 4249
class class class wbr 4452 cid 4795
`' ccnv 5003 |` cres 5006 |
This theorem is referenced by: pslem 15836 psss 15844 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-id 4800 df-xp 5010 df-rel 5011 df-cnv 5012 df-res 5016 |
Copyright terms: Public domain | W3C validator |