MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax-distr Unicode version

Axiom ax-distr 9228
Description: Distributive law for complex numbers. Axiom 11 of 22 for real and complex numbers, justified by theorem axdistr 9204. Proofs should normally use adddi 9250 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.)
Assertion
Ref Expression
ax-distr

Detailed syntax breakdown of Axiom ax-distr
StepHypRef Expression
1 cA . . . 4
2 cc 9159 . . . 4
31, 2wcel 1732 . . 3
4 cB . . . 4
54, 2wcel 1732 . . 3
6 cC . . . 4
76, 2wcel 1732 . . 3
83, 5, 7w3a 939 . 2
9 caddc 9164 . . . . 5
104, 6, 9co 6103 . . . 4
11 cmul 9166 . . . 4
121, 10, 11co 6103 . . 3
131, 4, 11co 6103 . . . 4
141, 6, 11co 6103 . . . 4
1513, 14, 9co 6103 . . 3
1612, 15wceq 1670 . 2
178, 16wi 4 1
Colors of variables: wff set class
This axiom is referenced by:  adddi  9250
  Copyright terms: Public domain W3C validator