MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax-i2m1 Unicode version

Axiom ax-i2m1 9342
Description: i-squared equals -1 (expressed as i-squared plus 1 is 0). Axiom 12 of 22 for real and complex numbers, justified by theorem axi2m1 9318. (Contributed by NM, 29-Jan-1995.)
Assertion
Ref Expression
ax-i2m1

Detailed syntax breakdown of Axiom ax-i2m1
StepHypRef Expression
1 ci 9276 . . . 4
2 cmul 9279 . . . 4
31, 1, 2co 6086 . . 3
4 c1 9275 . . 3
5 caddc 9277 . . 3
63, 4, 5co 6086 . 2
7 cc0 9274 . 2
86, 7wceq 1369 1
Colors of variables: wff setvar class
This axiom is referenced by:  0cn  9370  mul02lem2  9538  addid1  9541  cnegex2  9543  ine0  9772  ixi  9957  inelr  10304
  Copyright terms: Public domain W3C validator