MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax-sep Unicode version

Axiom ax-sep 4439
Description: The Axiom of Separation of ZF set theory. See axsep 4438 for more information. It was derived as axsep 4438 above and is therefore redundant, but we state it as a separate axiom here so that its uses can be identified more easily. (Contributed by NM, 11-Sep-2006.)
Assertion
Ref Expression
ax-sep
Distinct variable groups:   , ,   , ,
Allowed substitution hint:   ( )

Detailed syntax breakdown of Axiom ax-sep
StepHypRef Expression
1 vx . . . . 5
2 vy . . . . 5
31, 2wel 1733 . . . 4
4 vz . . . . . 6
51, 4wel 1733 . . . . 5
6 wph . . . . 5
75, 6wa 360 . . . 4
83, 7wb 178 . . 3
98, 1wal 1564 . 2
109, 2wex 1565 1
Colors of variables: wff set class
This axiom is referenced by:  axsep2  4440  zfauscl  4441  bm1.3ii  4442  ax6vsep  4443  axnul  4446  nalset  4455
  Copyright terms: Public domain W3C validator