Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax-un Unicode version

Axiom ax-un 6592
 Description: Axiom of Union. An axiom of Zermelo-Fraenkel set theory. It states that a set exists that includes the union of a given set i.e. the collection of all members of the members of . The variant axun2 6594 states that the union itself exists. A version with the standard abbreviation for union is uniex2 6595. A version using class notation is uniex 6596. The union of a class df-uni 4250 should not be confused with the union of two classes df-un 3480. Their relationship is shown in unipr 4262. (Contributed by NM, 23-Dec-1993.)
Assertion
Ref Expression
ax-un
Distinct variable group:   ,,,

Detailed syntax breakdown of Axiom ax-un
StepHypRef Expression
1 vz . . . . . . 7
2 vw . . . . . . 7
31, 2wel 1819 . . . . . 6
4 vx . . . . . . 7
52, 4wel 1819 . . . . . 6
63, 5wa 369 . . . . 5
76, 2wex 1612 . . . 4
8 vy . . . . 5
91, 8wel 1819 . . . 4
107, 9wi 4 . . 3
1110, 1wal 1393 . 2
1211, 8wex 1612 1
 Colors of variables: wff setvar class This axiom is referenced by:  zfun  6593  axun2  6594
 Copyright terms: Public domain W3C validator