MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax11w Unicode version

Theorem ax11w 1826
Description: Weak version of ax-11 1842 from which we can prove any ax-11 1842 instance not involving wff variables or bundling. Uses only Tarski's FOL axiom schemes. Unlike ax-11 1842, this theorem requires that and be distinct i.e. are not bundled. (Contributed by NM, 10-Apr-2017.)
Hypothesis
Ref Expression
ax11w.1
Assertion
Ref Expression
ax11w
Distinct variable groups:   ,   ,   ,   ,

Proof of Theorem ax11w
StepHypRef Expression
1 ax11w.1 . 2
21alcomiw 1811 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  <->wb 184  A.wal 1393
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790
This theorem depends on definitions:  df-bi 185  df-ex 1613
  Copyright terms: Public domain W3C validator