MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax12i Unicode version

Theorem ax12i 1738
Description: Inference that has ax-12 1854 (without A. ) as its conclusion. Uses only Tarski's FOL axiom schemes. The hypotheses may be eliminable without one or more of these axioms in special cases. Proof similar to Lemma 16 of [Tarski] p. 70. (Contributed by NM, 20-May-2008.)
Hypotheses
Ref Expression
ax12i.1
ax12i.2
Assertion
Ref Expression
ax12i

Proof of Theorem ax12i
StepHypRef Expression
1 ax12i.1 . 2
2 ax12i.2 . . 3
31biimprcd 225 . . 3
42, 3alrimih 1642 . 2
51, 4syl6bi 228 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  <->wb 184  A.wal 1393
This theorem is referenced by:  ax12wlem  1828
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631
This theorem depends on definitions:  df-bi 185
  Copyright terms: Public domain W3C validator