![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > ax12inda | Unicode version |
Description: Induction step for constructing a substitution instance of ax-c15 2220 without using ax-c15 2220. Quantification case. (When and are distinct, ax12inda2 2277 may be used instead to avoid the dummy variable in the proof.) (Contributed by NM, 24-Jan-2007.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ax12inda.1 |
Ref | Expression |
---|---|
ax12inda |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax6ev 1749 | . . 3 | |
2 | ax12inda.1 | . . . . . . 7 | |
3 | 2 | ax12inda2 2277 | . . . . . 6 |
4 | dveeq2-o 2263 | . . . . . . . . 9 | |
5 | 4 | imp 429 | . . . . . . . 8 |
6 | hba1-o 2228 | . . . . . . . . . 10 | |
7 | equequ2 1799 | . . . . . . . . . . 11 | |
8 | 7 | sps-o 2238 | . . . . . . . . . 10 |
9 | 6, 8 | albidh 1675 | . . . . . . . . 9 |
10 | 9 | notbid 294 | . . . . . . . 8 |
11 | 5, 10 | syl 16 | . . . . . . 7 |
12 | 7 | adantl 466 | . . . . . . . 8 |
13 | 8 | imbi1d 317 | . . . . . . . . . . 11 |
14 | 6, 13 | albidh 1675 | . . . . . . . . . 10 |
15 | 5, 14 | syl 16 | . . . . . . . . 9 |
16 | 15 | imbi2d 316 | . . . . . . . 8 |
17 | 12, 16 | imbi12d 320 | . . . . . . 7 |
18 | 11, 17 | imbi12d 320 | . . . . . 6 |
19 | 3, 18 | mpbii 211 | . . . . 5 |
20 | 19 | ex 434 | . . . 4 |
21 | 20 | exlimdv 1724 | . . 3 |
22 | 1, 21 | mpi 17 | . 2 |
23 | 22 | pm2.43i 47 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
<-> wb 184 /\ wa 369 A. wal 1393
E. wex 1612 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-c5 2214 ax-c4 2215 ax-c7 2216 ax-c11 2218 ax-c9 2221 ax-c16 2223 |
This theorem depends on definitions: df-bi 185 df-an 371 df-ex 1613 df-nf 1617 |
Copyright terms: Public domain | W3C validator |