![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > ax12inda2 | Unicode version |
Description: Induction step for constructing a substitution instance of ax-c15 2220 without using ax-c15 2220. Quantification case. When and are distinct, this theorem avoids the dummy variables needed by the more general ax12inda 2278. (Contributed by NM, 24-Jan-2007.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ax12inda2.1 |
Ref | Expression |
---|---|
ax12inda2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1 6 | . . . . 5 | |
2 | ax16g-o 2264 | . . . . 5 | |
3 | 1, 2 | syl5 32 | . . . 4 |
4 | 3 | a1d 25 | . . 3 |
5 | 4 | a1d 25 | . 2 |
6 | ax12inda2.1 | . . 3 | |
7 | 6 | ax12indalem 2275 | . 2 |
8 | 5, 7 | pm2.61i 164 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
A. wal 1393 |
This theorem is referenced by: ax12inda 2278 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-c5 2214 ax-c4 2215 ax-c7 2216 ax-c11 2218 ax-c9 2221 ax-c16 2223 |
This theorem depends on definitions: df-bi 185 df-an 371 df-ex 1613 df-nf 1617 |
Copyright terms: Public domain | W3C validator |