![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > ax12v2-o | Unicode version |
Description: Recovery of ax-c15 2220 from ax12v 1855 without using ax-c15 2220. The hypothesis is even weaker than ax12v 1855, with both distinct from and not occurring in . Thus, the hypothesis provides an alternate axiom that can be used in place of ax-c15 2220. (Contributed by NM, 2-Feb-2007.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ax12v2-o.1 |
Ref | Expression |
---|---|
ax12v2-o |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax6ev 1749 | . 2 | |
2 | ax12v2-o.1 | . . . . 5 | |
3 | equequ2 1799 | . . . . . . 7 | |
4 | 3 | adantl 466 | . . . . . 6 |
5 | dveeq2-o 2263 | . . . . . . . . 9 | |
6 | 5 | imp 429 | . . . . . . . 8 |
7 | nfa1-o 2245 | . . . . . . . . 9 | |
8 | 3 | imbi1d 317 | . . . . . . . . . 10 |
9 | 8 | sps-o 2238 | . . . . . . . . 9 |
10 | 7, 9 | albid 1885 | . . . . . . . 8 |
11 | 6, 10 | syl 16 | . . . . . . 7 |
12 | 11 | imbi2d 316 | . . . . . 6 |
13 | 4, 12 | imbi12d 320 | . . . . 5 |
14 | 2, 13 | mpbii 211 | . . . 4 |
15 | 14 | ex 434 | . . 3 |
16 | 15 | exlimdv 1724 | . 2 |
17 | 1, 16 | mpi 17 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
<-> wb 184 /\ wa 369 A. wal 1393
E. wex 1612 |
This theorem is referenced by: ax12a2-o 2280 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-c5 2214 ax-c4 2215 ax-c7 2216 ax-c11 2218 ax-c9 2221 |
This theorem depends on definitions: df-bi 185 df-an 371 df-ex 1613 df-nf 1617 |
Copyright terms: Public domain | W3C validator |