![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > ax16g-o | Unicode version |
Description: A generalization of axiom ax-c16 2223. Version of axc16g 1940 using ax-c11 2218. (Contributed by NM, 15-May-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ax16g-o |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | aev-o 2261 | . 2 | |
2 | ax-c16 2223 | . 2 | |
3 | biidd 237 | . . . 4 | |
4 | 3 | dral1-o 2233 | . . 3 |
5 | 4 | biimprd 223 | . 2 |
6 | 1, 2, 5 | sylsyld 56 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 A. wal 1393 |
This theorem is referenced by: ax12inda2 2277 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-c5 2214 ax-c4 2215 ax-c7 2216 ax-c11 2218 ax-c9 2221 ax-c16 2223 |
This theorem depends on definitions: df-bi 185 df-an 371 df-ex 1613 df-nf 1617 |
Copyright terms: Public domain | W3C validator |