MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax16nfALT Unicode version

Theorem ax16nfALT 2065
Description: Alternate proof of ax16nf 1944, shorter but requiring ax-11 1842. (Contributed by Mario Carneiro, 7-Oct-2016.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
ax16nfALT
Distinct variable group:   ,

Proof of Theorem ax16nfALT
StepHypRef Expression
1 nfae 2056 . 2
2 axc16g 1940 . 2
31, 2nfd 1878 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  A.wal 1393  F/wnf 1616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999
This theorem depends on definitions:  df-bi 185  df-an 371  df-ex 1613  df-nf 1617
  Copyright terms: Public domain W3C validator