MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax5d Unicode version

Theorem ax5d 1705
Description: ax-5 1704 with antecedent. Useful in proofs of deduction versions of bound-variable hypothesis builders. (Contributed by NM, 1-Mar-2013.)
Assertion
Ref Expression
ax5d
Distinct variable group:   ,

Proof of Theorem ax5d
StepHypRef Expression
1 ax-5 1704 . 2
21a1i 11 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  A.wal 1393
This theorem is referenced by:  ax13w  1832  aevlem1  1939  bj-axc11nlemv  34315  bj-axc15v  34330
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-5 1704
  Copyright terms: Public domain W3C validator