![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > ax6ev | Unicode version |
Description: At least one individual exists. Weaker version of ax6e 2002. When possible, use of this theorem rather than ax6e 2002 is preferred since its derivation is much shorter and requires fewer axioms. (Contributed by NM, 3-Aug-2017.) |
Ref | Expression |
---|---|
ax6ev |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax6v 1748 | . 2 | |
2 | df-ex 1613 | . 2 | |
3 | 1, 2 | mpbir 209 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 A. wal 1393
E. wex 1612 |
This theorem is referenced by: exiftru 1750 spimeh 1782 equs4v 1787 equid 1791 equviniv 1803 ax12v 1855 ax12vOLD 1856 19.8a 1857 19.8aOLD 1858 aev 1943 equsalhw 1945 cbv3hv 1956 ax6e 2002 axc11n 2049 axc11nOLD 2050 ax12v2 2083 sbcom2 2189 axc11n-16 2268 ax12eq 2271 ax12el 2272 ax12inda 2278 ax12v2-o 2279 euequ1 2288 euex 2308 euequ1OLD 2387 axext3 2437 relop 5158 dmi 5222 snnex 6606 1st2val 6826 2nd2val 6827 wl-sbcom2d 30011 ax6e2eq 33330 relopabVD 33701 ax6e2eqVD 33707 bnj1468 33904 bj-spimtv 34278 bj-spimv 34279 bj-spimedv 34280 bj-speiv 34285 bj-equsalv 34309 bj-equsalvv 34310 bj-axc11nv 34316 bj-axc15v 34330 bj-dtrucor2v 34387 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-6 1747 |
This theorem depends on definitions: df-bi 185 df-ex 1613 |
Copyright terms: Public domain | W3C validator |