![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > ax6vsep | Unicode version |
Description: Derive a weakened version of ax-6 1747 ( i.e. ax6v 1748), where and must be distinct, from Separation ax-sep 4573 and Extensionality ax-ext 2435. See ax6 2003 for the derivation of ax-6 1747 from ax6v 1748. (Contributed by NM, 12-Nov-2013.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ax6vsep |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-sep 4573 | . . 3 | |
2 | id 22 | . . . . . . . . 9 | |
3 | 2 | biantru 505 | . . . . . . . 8 |
4 | 3 | bibi2i 313 | . . . . . . 7 |
5 | 4 | biimpri 206 | . . . . . 6 |
6 | 5 | alimi 1633 | . . . . 5 |
7 | ax-ext 2435 | . . . . 5 | |
8 | 6, 7 | syl 16 | . . . 4 |
9 | 8 | eximi 1656 | . . 3 |
10 | 1, 9 | ax-mp 5 | . 2 |
11 | df-ex 1613 | . 2 | |
12 | 10, 11 | mpbi 208 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
<-> wb 184 /\ wa 369 A. wal 1393
= wceq 1395 E. wex 1612 e. wcel 1818 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-ext 2435 ax-sep 4573 |
This theorem depends on definitions: df-bi 185 df-an 371 df-ex 1613 |
Copyright terms: Public domain | W3C validator |