MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axacndlem2 Unicode version

Theorem axacndlem2 9007
Description: Lemma for the Axiom of Choice with no distinct variable conditions. (Contributed by NM, 3-Jan-2002.)
Assertion
Ref Expression
axacndlem2

Proof of Theorem axacndlem2
StepHypRef Expression
1 nfae 2056 . . 3
2 nfae 2056 . . . 4
3 simpr 461 . . . . . 6
43alimi 1633 . . . . 5
5 nd1 8983 . . . . . 6
65pm2.21d 106 . . . . 5
74, 6syl5 32 . . . 4
82, 7alrimi 1877 . . 3
91, 8alrimi 1877 . 2
10 19.8a 1857 . 2
119, 10syl 16 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  <->wb 184  /\wa 369  A.wal 1393  E.wex 1612
This theorem is referenced by:  axacndlem4  9009  axacnd  9011
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-8 1820  ax-9 1822  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435  ax-sep 4573  ax-nul 4581  ax-pr 4691  ax-reg 8039
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-v 3111  df-dif 3478  df-un 3480  df-nul 3785  df-sn 4030  df-pr 4032
  Copyright terms: Public domain W3C validator