![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > axbnd | Unicode version |
Description: Axiom of Bundling
(intuitionistic logic axiom ax-bnd). In classical
logic, this and axi12 2433 are fairly straightforward consequences of
axc9 2046. But in intuitionistic logic, it is not easy
to add the extra
A. x to axi12 2433 and so we treat the two as separate axioms.
(Contributed by Jim Kingdon, 22-Mar-2018.) |
Ref | Expression |
---|---|
axbnd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfnae 2058 | . . . . . 6 | |
2 | nfnae 2058 | . . . . . 6 | |
3 | 1, 2 | nfan 1928 | . . . . 5 |
4 | nfnae 2058 | . . . . . . 7 | |
5 | nfnae 2058 | . . . . . . 7 | |
6 | 4, 5 | nfan 1928 | . . . . . 6 |
7 | axc9 2046 | . . . . . . 7 | |
8 | 7 | imp 429 | . . . . . 6 |
9 | 6, 8 | alrimi 1877 | . . . . 5 |
10 | 3, 9 | alrimi 1877 | . . . 4 |
11 | 10 | ex 434 | . . 3 |
12 | 11 | orrd 378 | . 2 |
13 | 12 | orri 376 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
\/ wo 368 /\ wa 369 A. wal 1393 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-ex 1613 df-nf 1617 |
Copyright terms: Public domain | W3C validator |