![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > axc11 | Unicode version |
Description: Show that ax-c11 2218 can be derived from ax-c11n 2219 in the form of axc11n 2049. Normally, axc11 2054 should be used rather than ax-c11 2218, except by theorems specifically studying the latter's properties. (Contributed by NM, 16-May-2008.) (Proof shortened by Wolf Lammen, 21-Apr-2018.) |
Ref | Expression |
---|---|
axc11 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axc112 1937 | . 2 | |
2 | 1 | aecoms 2052 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 A. wal 1393 |
This theorem is referenced by: hbae 2055 axc16gOLD 2061 dral1 2067 dral1ALT 2068 nd1 8983 nd2 8984 axpowndlem3OLD 8997 wl-aetr 29983 ax6e2eq 33330 ax6e2eqVD 33707 2sb5ndVD 33710 2sb5ndALT 33732 bj-hbaeb2 34391 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-12 1854 ax-13 1999 |
This theorem depends on definitions: df-bi 185 df-an 371 df-ex 1613 df-nf 1617 |
Copyright terms: Public domain | W3C validator |