![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > axc11n-16 | Unicode version |
Description: This theorem shows that, given ax-c16 2223, we can derive a version of ax-c11n 2219. However, it is weaker than ax-c11n 2219 because it has a distinct variable requirement. (Contributed by Andrew Salmon, 27-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
axc11n-16 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-c16 2223 | . . . 4 | |
2 | 1 | alrimiv 1719 | . . 3 |
3 | 2 | axc4i-o 2229 | . 2 |
4 | equequ1 1798 | . . . . . 6 | |
5 | 4 | cbvalv 2023 | . . . . . . 7 |
6 | 5 | a1i 11 | . . . . . 6 |
7 | 4, 6 | imbi12d 320 | . . . . 5 |
8 | 7 | albidv 1713 | . . . 4 |
9 | 8 | cbvalv 2023 | . . 3 |
10 | 9 | biimpi 194 | . 2 |
11 | nfa1-o 2245 | . . . . . . 7 | |
12 | 11 | 19.23 1910 | . . . . . 6 |
13 | 12 | albii 1640 | . . . . 5 |
14 | ax6ev 1749 | . . . . . . . 8 | |
15 | pm2.27 39 | . . . . . . . 8 | |
16 | 14, 15 | ax-mp 5 | . . . . . . 7 |
17 | 16 | alimi 1633 | . . . . . 6 |
18 | equequ2 1799 | . . . . . . . . 9 | |
19 | 18 | spv 2011 | . . . . . . . 8 |
20 | 19 | sps-o 2238 | . . . . . . 7 |
21 | 20 | alcoms 1843 | . . . . . 6 |
22 | 17, 21 | syl 16 | . . . . 5 |
23 | 13, 22 | sylbi 195 | . . . 4 |
24 | 23 | alcoms 1843 | . . 3 |
25 | 24 | axc4i-o 2229 | . 2 |
26 | 3, 10, 25 | 3syl 20 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
A. wal 1393 E. wex 1612 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-c5 2214 ax-c4 2215 ax-c7 2216 ax-c16 2223 |
This theorem depends on definitions: df-bi 185 df-an 371 df-ex 1613 df-nf 1617 |
Copyright terms: Public domain | W3C validator |