Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  axc11nOLD Unicode version

Theorem axc11nOLD 2050
 Description: Obsolete proof of axc11n 2049 as of 30-Nov-2019. (Contributed by NM, 10-May-1993.) (Revised by NM, 7-Nov-2015.) (Proof shortened by Wolf Lammen, 6-Mar-2018.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
axc11nOLD

Proof of Theorem axc11nOLD
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 ax6ev 1749 . . 3
2 equcomi 1793 . . . . . 6
3 dveeq1 2044 . . . . . 6
42, 3syl5com 30 . . . . 5
5 axc112 1937 . . . . . 6
6 axc11nlemOLD 2048 . . . . . 6
75, 6syl6 33 . . . . 5
84, 7syl9 71 . . . 4
98exlimiv 1722 . . 3
101, 9ax-mp 5 . 2
1110pm2.18d 111 1
 Colors of variables: wff setvar class Syntax hints:  -.wn 3  ->wi 4  A.wal 1393  E.wex 1612 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-12 1854  ax-13 1999 This theorem depends on definitions:  df-bi 185  df-an 371  df-ex 1613  df-nf 1617
 Copyright terms: Public domain W3C validator