![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > axc14 | Unicode version |
Description: Axiom ax-c14 2222 is redundant if we assume ax-5 1704.
Remark 9.6 in
[Megill] p. 448 (p. 16 of the preprint),
regarding axiom scheme C14'.
Note that is a dummy variable introduced in the proof. Its purpose is to satisfy the distinct variable requirements of dveel2 2112 and ax-5 1704. By the end of the proof it has vanished, and the final theorem has no distinct variable requirements. (Contributed by NM, 29-Jun-1995.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
axc14 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hbn1 1838 | . . . . 5 | |
2 | dveel2 2112 | . . . . 5 | |
3 | 1, 2 | hbim1 1918 | . . . 4 |
4 | elequ1 1821 | . . . . 5 | |
5 | 4 | imbi2d 316 | . . . 4 |
6 | 3, 5 | dvelim 2079 | . . 3 |
7 | nfa1 1897 | . . . . 5 | |
8 | 7 | nfn 1901 | . . . 4 |
9 | 8 | 19.21 1905 | . . 3 |
10 | 6, 9 | syl6ib 226 | . 2 |
11 | 10 | pm2.86d 99 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
A. wal 1393 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 |
This theorem depends on definitions: df-bi 185 df-an 371 df-ex 1613 df-nf 1617 |
Copyright terms: Public domain | W3C validator |