MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axc16ALT Unicode version

Theorem axc16ALT 2105
Description: Alternate proof of axc16 1941, shorter but requiring ax-11 1842 and using df-sb 1740. (Contributed by NM, 17-May-2008.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
axc16ALT
Distinct variable group:   ,

Proof of Theorem axc16ALT
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 sbequ12 1992 . 2
2 ax-5 1704 . . 3
32hbsb3 2103 . 2
41, 3axc16i 2064 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  A.wal 1393  [wsb 1739
This theorem is referenced by:  axc16gALT  2106
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999
This theorem depends on definitions:  df-bi 185  df-an 371  df-ex 1613  df-nf 1617  df-sb 1740
  Copyright terms: Public domain W3C validator