MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axc16gALT Unicode version

Theorem axc16gALT 2066
Description: Alternate proof of axc16g 1878 that uses df-sb 1703. (Contributed by NM, 15-May-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
axc16gALT
Distinct variable group:   ,

Proof of Theorem axc16gALT
StepHypRef Expression
1 aev 1881 . 2
2 axc16ALT 2065 . 2
3 biidd 237 . . . 4
43dral1 2027 . . 3
54biimprd 223 . 2
61, 2, 5sylsyld 56 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  A.wal 1368
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955
This theorem depends on definitions:  df-bi 185  df-an 371  df-ex 1588  df-nf 1591  df-sb 1703
  Copyright terms: Public domain W3C validator