MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axc4 Unicode version

Theorem axc4 1860
Description: Show that the original axiom ax-c4 2215 can be derived from ax-4 1631 and others. See ax4 2225 for the rederivation of ax-4 1631 from ax-c4 2215.

Part of the proof is based on the proof of Lemma 22 of [Monk2] p. 114. (Contributed by NM, 21-May-2008.) (Proof modification is discouraged.)

Assertion
Ref Expression
axc4

Proof of Theorem axc4
StepHypRef Expression
1 sp 1859 . . . 4
21con2i 120 . . 3
3 hbn1 1838 . . 3
4 hbn1 1838 . . . . 5
54con1i 129 . . . 4
65alimi 1633 . . 3
72, 3, 63syl 20 . 2
8 alim 1632 . 2
97, 8syl5 32 1
Colors of variables: wff setvar class
Syntax hints:  -.wn 3  ->wi 4  A.wal 1393
This theorem is referenced by:  axc5c4c711  31308
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-12 1854
This theorem depends on definitions:  df-bi 185  df-ex 1613
  Copyright terms: Public domain W3C validator