MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axc5 Unicode version

Theorem axc5 2224
Description: This theorem repeats sp 1859 under the name axc5 2224, so that the metamath program's "verify markup" command will check that it matches axiom scheme ax-c5 2214. It is preferred that references to this theorem use the name sp 1859. (Contributed by NM, 18-Aug-2017.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
axc5

Proof of Theorem axc5
StepHypRef Expression
1 sp 1859 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  A.wal 1393
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-12 1854
This theorem depends on definitions:  df-bi 185  df-ex 1613
  Copyright terms: Public domain W3C validator