![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > axc9lem2 | Unicode version |
Description: Lemma for nfeqf2 2041. This lemma is equivalent to ax13v 2000 with one distinct variable constraint removed. (Contributed by Wolf Lammen, 8-Sep-2018.) (New usage is discouraged.) |
Ref | Expression |
---|---|
axc9lem2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axc9lem1 2001 | . . . 4 | |
2 | equequ2 1799 | . . . . . . 7 | |
3 | 2 | biimprcd 225 | . . . . . 6 |
4 | 3 | eximi 1656 | . . . . 5 |
5 | 19.36v 1762 | . . . . 5 | |
6 | 4, 5 | sylib 196 | . . . 4 |
7 | 1, 6 | syl9 71 | . . 3 |
8 | 7 | alrimdv 1721 | . 2 |
9 | nfv 1707 | . . 3 | |
10 | 9, 2 | equsal 2036 | . 2 |
11 | 8, 10 | syl6ib 226 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
A. wal 1393 E. wex 1612 |
This theorem is referenced by: nfeqf2 2041 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-12 1854 ax-13 1999 |
This theorem depends on definitions: df-bi 185 df-an 371 df-ex 1613 df-nf 1617 |
Copyright terms: Public domain | W3C validator |