![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > axdc3lem | Unicode version |
Description: The class of finite approximations to the DC sequence is a set. (We derive here the stronger statement that is a subset of a specific set, namely .) (Unnecessary distinct variable restrictions were removed by David Abernethy, 18-Mar-2014.) (Contributed by Mario Carneiro, 27-Jan-2013.) (Revised by Mario Carneiro, 18-Mar-2014.) |
Ref | Expression |
---|---|
axdc3lem.1 | |
axdc3lem.2 |
Ref | Expression |
---|---|
axdc3lem |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dcomex 8848 | . . . 4 | |
2 | axdc3lem.1 | . . . 4 | |
3 | 1, 2 | xpex 6604 | . . 3 |
4 | 3 | pwex 4635 | . 2 |
5 | axdc3lem.2 | . . 3 | |
6 | fssxp 5748 | . . . . . . . . 9 | |
7 | peano2 6720 | . . . . . . . . . 10 | |
8 | omelon2 6712 | . . . . . . . . . . . 12 | |
9 | 1, 8 | ax-mp 5 | . . . . . . . . . . 11 |
10 | 9 | onelssi 4991 | . . . . . . . . . 10 |
11 | xpss1 5116 | . . . . . . . . . 10 | |
12 | 7, 10, 11 | 3syl 20 | . . . . . . . . 9 |
13 | 6, 12 | sylan9ss 3516 | . . . . . . . 8 |
14 | selpw 4019 | . . . . . . . 8 | |
15 | 13, 14 | sylibr 212 | . . . . . . 7 |
16 | 15 | ancoms 453 | . . . . . 6 |
17 | 16 | 3ad2antr1 1161 | . . . . 5 |
18 | 17 | rexlimiva 2945 | . . . 4 |
19 | 18 | abssi 3574 | . . 3 |
20 | 5, 19 | eqsstri 3533 | . 2 |
21 | 4, 20 | ssexi 4597 | 1 |
Colors of variables: wff setvar class |
Syntax hints: /\ wa 369 /\ w3a 973
= wceq 1395 e. wcel 1818 { cab 2442
A. wral 2807 E. wrex 2808 cvv 3109
C_ wss 3475 c0 3784 ~P cpw 4012 con0 4883 suc csuc 4885 X. cxp 5002
--> wf 5589 ` cfv 5593 com 6700 |
This theorem is referenced by: axdc3lem2 8852 axdc3lem4 8854 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-dc 8847 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-fv 5601 df-om 6701 df-1o 7149 |
Copyright terms: Public domain | W3C validator |