![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > axdclem | Unicode version |
Description: Lemma for axdc 8922. (Contributed by Mario Carneiro, 25-Jan-2013.) |
Ref | Expression |
---|---|
axdclem.1 |
Ref | Expression |
---|---|
axdclem |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvex 5881 | . . . . . . . . 9 | |
2 | vex 3112 | . . . . . . . . 9 | |
3 | 1, 2 | brelrn 5238 | . . . . . . . 8 |
4 | 3 | abssi 3574 | . . . . . . 7 |
5 | sstr 3511 | . . . . . . 7 | |
6 | 4, 5 | mpan 670 | . . . . . 6 |
7 | vex 3112 | . . . . . . . 8 | |
8 | 7 | dmex 6733 | . . . . . . 7 |
9 | 8 | elpw2 4616 | . . . . . 6 |
10 | 6, 9 | sylibr 212 | . . . . 5 |
11 | neeq1 2738 | . . . . . . . 8 | |
12 | abn0 3804 | . . . . . . . 8 | |
13 | 11, 12 | syl6bb 261 | . . . . . . 7 |
14 | eleq2 2530 | . . . . . . . . . 10 | |
15 | breq2 4456 | . . . . . . . . . . . 12 | |
16 | 15 | cbvabv 2600 | . . . . . . . . . . 11 |
17 | 16 | eleq2i 2535 | . . . . . . . . . 10 |
18 | 14, 17 | syl6bbr 263 | . . . . . . . . 9 |
19 | fvex 5881 | . . . . . . . . . 10 | |
20 | breq2 4456 | . . . . . . . . . 10 | |
21 | 19, 20 | elab 3246 | . . . . . . . . 9 |
22 | 18, 21 | syl6bb 261 | . . . . . . . 8 |
23 | fveq2 5871 | . . . . . . . . 9 | |
24 | 23 | breq2d 4464 | . . . . . . . 8 |
25 | 22, 24 | bitrd 253 | . . . . . . 7 |
26 | 13, 25 | imbi12d 320 | . . . . . 6 |
27 | 26 | rspcv 3206 | . . . . 5 |
28 | 10, 27 | syl 16 | . . . 4 |
29 | 28 | com12 31 | . . 3 |
30 | 29 | 3imp 1190 | . 2 |
31 | fvex 5881 | . . . 4 | |
32 | nfcv 2619 | . . . . 5 | |
33 | nfcv 2619 | . . . . 5 | |
34 | nfcv 2619 | . . . . 5 | |
35 | axdclem.1 | . . . . 5 | |
36 | breq1 4455 | . . . . . . 7 | |
37 | 36 | abbidv 2593 | . . . . . 6 |
38 | 37 | fveq2d 5875 | . . . . 5 |
39 | 32, 33, 34, 35, 38 | frsucmpt 7122 | . . . 4 |
40 | 31, 39 | mpan2 671 | . . 3 |
41 | 40 | breq2d 4464 | . 2 |
42 | 30, 41 | syl5ibrcom 222 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ w3a 973
= wceq 1395 E. wex 1612 e. wcel 1818
{ cab 2442 =/= wne 2652 A. wral 2807
cvv 3109
C_ wss 3475 c0 3784 ~P cpw 4012 class class class wbr 4452
e. cmpt 4510 suc csuc 4885 dom cdm 5004
ran crn 5005 |` cres 5006 ` cfv 5593
com 6700
rec crdg 7094 |
This theorem is referenced by: axdclem2 8921 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-om 6701 df-recs 7061 df-rdg 7095 |
Copyright terms: Public domain | W3C validator |