![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > axdistr | Unicode version |
Description: Distributive law for complex numbers (left-distributivity). Axiom 11 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-distr 9580 be used later. Instead, use adddi 9602. (Contributed by NM, 2-Sep-1995.) (New usage is discouraged.) |
Ref | Expression |
---|---|
axdistr |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfcnqs 9540 | . 2 | |
2 | addcnsrec 9541 | . 2 | |
3 | mulcnsrec 9542 | . 2 | |
4 | mulcnsrec 9542 | . 2 | |
5 | mulcnsrec 9542 | . 2 | |
6 | addcnsrec 9541 | . 2 | |
7 | addclsr 9481 | . . . 4 | |
8 | addclsr 9481 | . . . 4 | |
9 | 7, 8 | anim12i 566 | . . 3 |
10 | 9 | an4s 826 | . 2 |
11 | mulclsr 9482 | . . . . 5 | |
12 | m1r 9480 | . . . . . 6 | |
13 | mulclsr 9482 | . . . . . 6 | |
14 | mulclsr 9482 | . . . . . 6 | |
15 | 12, 13, 14 | sylancr 663 | . . . . 5 |
16 | addclsr 9481 | . . . . 5 | |
17 | 11, 15, 16 | syl2an 477 | . . . 4 |
18 | 17 | an4s 826 | . . 3 |
19 | mulclsr 9482 | . . . . 5 | |
20 | mulclsr 9482 | . . . . 5 | |
21 | addclsr 9481 | . . . . 5 | |
22 | 19, 20, 21 | syl2anr 478 | . . . 4 |
23 | 22 | an42s 827 | . . 3 |
24 | 18, 23 | jca 532 | . 2 |
25 | mulclsr 9482 | . . . . 5 | |
26 | mulclsr 9482 | . . . . . 6 | |
27 | mulclsr 9482 | . . . . . 6 | |
28 | 12, 26, 27 | sylancr 663 | . . . . 5 |
29 | addclsr 9481 | . . . . 5 | |
30 | 25, 28, 29 | syl2an 477 | . . . 4 |
31 | 30 | an4s 826 | . . 3 |
32 | mulclsr 9482 | . . . . 5 | |
33 | mulclsr 9482 | . . . . 5 | |
34 | addclsr 9481 | . . . . 5 | |
35 | 32, 33, 34 | syl2anr 478 | . . . 4 |
36 | 35 | an42s 827 | . . 3 |
37 | 31, 36 | jca 532 | . 2 |
38 | distrsr 9489 | . . . 4 | |
39 | distrsr 9489 | . . . . . 6 | |
40 | 39 | oveq2i 6307 | . . . . 5 |
41 | distrsr 9489 | . . . . 5 | |
42 | 40, 41 | eqtri 2486 | . . . 4 |
43 | 38, 42 | oveq12i 6308 | . . 3 |
44 | ovex 6324 | . . . 4 | |
45 | ovex 6324 | . . . 4 | |
46 | ovex 6324 | . . . 4 | |
47 | addcomsr 9485 | . . . 4 | |
48 | addasssr 9486 | . . . 4 | |
49 | ovex 6324 | . . . 4 | |
50 | 44, 45, 46, 47, 48, 49 | caov4 6506 | . . 3 |
51 | 43, 50 | eqtri 2486 | . 2 |
52 | distrsr 9489 | . . . 4 | |
53 | distrsr 9489 | . . . 4 | |
54 | 52, 53 | oveq12i 6308 | . . 3 |
55 | ovex 6324 | . . . 4 | |
56 | ovex 6324 | . . . 4 | |
57 | ovex 6324 | . . . 4 | |
58 | ovex 6324 | . . . 4 | |
59 | 55, 56, 57, 47, 48, 58 | caov4 6506 | . . 3 |
60 | 54, 59 | eqtri 2486 | . 2 |
61 | 1, 2, 3, 4, 5, 6, 10, 24, 37, 51, 60 | ecovdi 7438 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
/\ w3a 973 = wceq 1395 e. wcel 1818
cep 4794
`' ccnv 5003 (class class class)co 6296
cnr 9264 cm1r 9267
cplr 9268
cmr 9269
cc 9511 caddc 9516 cmul 9518 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-inf2 8079 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-int 4287 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-1st 6800 df-2nd 6801 df-recs 7061 df-rdg 7095 df-1o 7149 df-oadd 7153 df-omul 7154 df-er 7330 df-ec 7332 df-qs 7336 df-ni 9271 df-pli 9272 df-mi 9273 df-lti 9274 df-plpq 9307 df-mpq 9308 df-ltpq 9309 df-enq 9310 df-nq 9311 df-erq 9312 df-plq 9313 df-mq 9314 df-1nq 9315 df-rq 9316 df-ltnq 9317 df-np 9380 df-1p 9381 df-plp 9382 df-mp 9383 df-ltp 9384 df-enr 9454 df-nr 9455 df-plr 9456 df-mr 9457 df-m1r 9461 df-c 9519 df-add 9524 df-mul 9525 |
Copyright terms: Public domain | W3C validator |